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Abstract—Anomalous behaviour in subsystems of complex
machines often affect overall performance even without failures.
We devise unsupervised methods to detect times with degraded
performance, and localize correlated signals, evaluated on a
system with over 4000 monitored signals. From incidents compris-
ing both downtimes and degraded performance, our approach
localizes relevant signals within 1.2% of the parameter space.

Index Terms—Time-series, Causal Analysis, Degradation

I. INTRODUCTION

Despite previous efforts examining performance degradation
it is still challenging to diagnose problematic subsystems
resulting in unsteady machine performance [29]. We consider
cyberphysical systems (CPSs) such as light sources. X-ray
lasers are a kind of light source generating high energy
beams for scientific experiments. Light sources are com-
plex with multiple heterogeneous components (e.g., Radio-
Frequency (RF) cavities [24], magnets, water systems), and
even during normal operation, subsystem behaviour varies
with time and physical location making aberrations hard to
capture. Identifying malfunctions from among the considered
signals of the system (which we call the search space) while
the machine is operational is non-trivial. Existing threshold-
based alarms and monitoring tools are inadequate to quantify
performance degradation in its early-stages, leaving less time
for interventions before complete failure occurs.

We propose automated methods to localize a subset of signals
related to causal subsystems; i.e., subsystems related to a
performance anomaly. Our goal is not to pinpoint the root cause,
but to find unusual signal trends that can be a side-effect or
cause of anomalous behaviour, guiding operators in diagnosing
the problem. Quantifying degradation and causality has two
benefits. First, the subsystem specialist can potentially fix
problems before a failure happens. Second, even in the absence
of faults, unexpected signal correlations can bring to light
abnormalities in their infancy, aiding preventive maintenance.

Existing studies on performance diagnosis [17, 28] have
investigated approaches to enhance system reliability. As
subsystem functioning can be complicated enough to re-
quire dedicated investigation [10], most studies on physical
systems analyze subsystems separately (e.g., magnet power
supplies [15], heat pump [16]) without considering overall
machine performance. Some studies rely on injected faults [9],
or assume labeled data [24]. We develop an approach for causal
analysis of performance degradation on real production data
from entire systems. We exploit the following observations:
a) Using multiple performance-indicative signals helps capture

important correlations. (§ II)
b) All signals of a subsystem may not have similar trends,
or correlate with machine performance to the same extent.
Conversely, signals from multiple subsystems can collectively
hint at anomalous conditions. (§ II)
c) Signals can be inherently noisy (i.e., possess high variability)
whether or not they are anomalous. Examining a signal’s
general behaviour (compared to several time-windows) can
help identify non-causal signals. (§ IV)
d) Knowledge of a CPS’s physical architecture helps identify
signals that are causes rather than effects of problems. (§ II)

Based on these insights we make the following contributions:
1. We propose a method to classify machine degradation.
2. We perform unsupervised causal analysis to shortlist a subset
of signals pertaining to certain subsystems related to anomalies.
3. We evaluate our approach using cases from a production
CPS. Our approach achieves below 15% errors in detecting
degraded performance, and ranks relevant signals within the
top 1.2% (≤50) of the considered set of signals.

II. BACKGROUND AND MOTIVATION

Particle accelerators such as the X-ray free electron lasers
and storage rings generate high-energy beams [1]–[3]. Beam
experiments are used for a variety of activities ranging from soft
error assessment in memory chips to probing atomic properties
of materials [23]. These are large systems, often kilometers
in length, with many subsystems and thousands of sensors
that generate multivariate time-series data used for real-time
monitoring. Subsystem problems result in beam downtime (i.e.,
system failure) or intermittent beam performance degradation,
preventing effective utilization of an expensive machine. Cur-
rently, fault repair happens after a subsystem fault manifests.
For transient beam instabilities, engineers hand pick a few
signals based on experience to assess what may have caused
unexpected jitter at a specific location. Such manual efforts are
prone to missing subtle correlations and may come too late to
catch problems before a complete failure.

Most systems have a few metrics (e.g., so-called golden
signals [4]) that are used for analyzing overall performance.
Figures 1 and 2 show a degraded beam using two such golden
signals, namely, beam intensity and pulse energy. The x-axis
shows timestamps and the y-axis shows the normalized values
from the chosen signals. While intensity improves around hour
6, pulse energy remains low during the same time (Fig. 1). In
Fig. 2, both the signals drop around hour 13:30 indicating an



Fig. 1: System Performance Fig. 2: Degradation Fig. 3: Parameter Tuning Fig. 4: Subsystem Aberrations

Fig. 5: Correlation vs. Causation Fig. 6: Subsystem Correlations Fig. 7: Subsystem Signals

anomalous condition, while lack of major variations from the
11th to 13th hours imply normalcy.

Challenges: The major hurdles for anomaly diagnosis are:
Tuning side-effects: User experiments require specific machine
configurations achieved via manual parameter tuning. Such
parameters, called control variables, can trigger changes in
other signals, including performance-indicative ones. Inten-
tional signal adjustments produce time-series deviations similar
to anomalous fluctuations. Reconfigurations in the face of
unforeseen subsystem glitches, or environmental variations
beyond our control, add to the machine’s dynamic nature.
Assessing normal patterns and anomalies amidst time-varying
machine states is non-trivial. We track changes in the control
variables and analyze signal correlations when the machine
should be stable in the absence of major adjustments. (§ IV)

Figures 3 and 4 give an example of degradation that involves
tuning with 6 signals: 2 related to performance, 1 a tuned
parameter (photon energy), and the remaining 3 related to a
laser and water system. A performance drop is discernible
from hour 9 to 11:35 through the pulse energy signal, which
coincides with a manual increase of photon energy at hour 9
(Fig. 3). Fig. 4 shows that the laser room temperature drops
with this performance drop, indicating an anomalous condition.
The water signals close to the laser system show variations for
the next few hours. It is not clear if the water system contributes
to the degradation. In this case, the intentional photon energy
change caused the performance drop, and thus is not anomalous.
In the absence of subsystem correlations, a performance drop
can be a temporary side-effect of a manual adjustment. Such
simultaneous events make causal analysis difficult. Knowing
such subtle yet important signal correlations, if feasible, can
be helpful for diagnosing faulty subsystem behaviour.
Localization accuracy: Our goal is to produce a short list of
signals that are related to the cause of machine degradation
without discarding highly relevant signals. Many false positive
signals (i.e., unrelated signals that appear causal) in a short
list (e.g., 25-30), or causal signals buried in a large list (e.g.,
200-300) can hinder timely diagnosis. Signals from fewer areas,
over subsystems from a set of geographically dispersed signals

can be more useful in inferring the main anomalous subsystem.
Univariate signal trends are further analyzed to obtain a signal
list that is short yet precise. (§ IV)

Signals exhibiting variation during an episode of perfor-
mance degradation are not necessarily causal; what we are
looking for is unusual variability. Certain signals fluctuate
during performance variations no matter what the anomalous
subsystem is. Figure 5 shows an example to highlight that
a highly correlated signal need not be causal, with signal
variations between 3:00 and 6:00 hours. The performance drops
at ≈4:00 hours, discernible through the energy and intensity
signals. A specific RF-phase signal shows strong correlation to
performance, however, the RF-system is not the cause, but a
side-effect. The magnet-related signals are weakly correlated,
yet are closer to the cause: an unexpected jump in the magnetic
field induces an anomalous drop in performance.
Lack of time-delay: Signals vary across distant locations with
insignificant propagation delays. Establishing a happens-before
relation [6] is inappropriate in a rapidly changing system where
concurrent events are common and subsystem interactions are
not fully known. We try to eliminate non-causal signals without
forming any inter-signal relationships. (§ IV)

Systemic Guidance: The machine mostly has a linear
structure with major subsystems arranged roughly in a pipeline.
The beam is delivered downstream, at the experimental halls.
When multiple signals are correlated with an anomaly, signals
that are more upstream are more likely to be causes than effects.
Apart from control variables, subsystems with feedback control
can have non-causal signals that may not hint at anomalies
(e.g., supply temp.). Other CPSs with a non-linear structure
can also provide architectural guidance that can help eliminate
non-causal signals (e.g., regions closer to beam delivery, the
control vs. physical layer in industrial control systems [8]).

Figure 6 shows an example of degraded performance that
correlates with a water system’s control valve variations.
Co-located with this water system, air temperature signals
for the room (which houses electrical equipment) exhibit
anomalous behaviour, suggesting a good starting point for
manual inspection. Some other signals of the same subsystems



do not show strong correlations, and appear unrelated, as
seen in Figure 7. Such relatively stable signals of problematic
subsystems do not help with causal evidence.

Performance degradation is defined as increased variability
of golden signals relative to a reference time of normal
behaviour. Not all variations can be explained by the available
signals. Certain control software problems, for example, may
not have any underlying anomalous symptoms. Nonetheless,
capturing those cases where knowing the defective subsystem
can reduce recovery time can be beneficial.

III. RELATED WORK

Performance variability has been researched for super-
computers, clouds, the Internet, and other software service
systems using workload characteristics and resource usage
metrics [7, 12, 14, 25, 29] through information theoretic-
[11, 14], Machine Learning-based [25, 28], and statistical
methods [7, 20, 25]. Some predict [29] performance, while
others analyze variability [12]. Workload-aware studies [25]
are not relevant in our context, as we do not have access to
experiment meta-data. The challenge of dealing with manual
parameter setting is not explored in some prior studies [7, 12].
While the nature of anomalies (e.g., memory leaks, network
jitter) studied in the past [17, 18] is quite different from ours
(e.g., abrupt RF-phase jumps), they affirm the importance of
integrating domain insights (e.g., operator feedback) into the
solution for improved accuracy.

Many studies [6, 14, 17, 18, 22, 25, 28] conduct fault
localization, and anomaly diagnosis using hypothesis testing,
deep learning, feature aggregation, decision trees, and fault
injection. In contrast to these, we use fine-grained filtering by
examining signal trends to localize the search space, in the
absence of any synthetic data. CPSs often experience multiple
spatially distant anomalous events with negligible time delays
for which, graph or relation-based methods [21, 22, 26] may
be less viable for timely problem diagnosis.

Some related studies [8, 11, 19] on CPSs (e.g., X-ray lasers,
microgrids, electrical plants) perform subsystem-oriented fault
analysis that can complement our work. Past approaches include
isolation forests, graphs, clustering, and Bayesian models [5].
Regression models that work for IT service systems may not be
effective for physical systems [22] based on the quality of time-
series data. Additional methods analyzing signal correlations,
such as ours, can potentially further benefit the community.

IV. APPROACH OVERVIEW

Complex systems often have no automated way to determine
degradation [10]. A few signal spikes and dips may be caught
visually, however, a systematic approach to identify degradation
with potential anomalies can help human-in-the-loop CPSs.

Degradation Detection: Performance is classified into three
categories, a) OK, b) Unsteady, and c) Degraded. OK
implies acceptable performance, Unsteady indicates moder-
ate variability that can be due to anomalous conditions, and
Degraded implies deteriorating performance. Degraded
suggests a relatively higher degree of unstable performance

over Unsteady. Downtime or failure is a special case of
degradation when the system has halted. Algorithm 1 shows the
major steps of our method. For a given system, the performance-
indicative signals, (i.e., sigperf), and the commonly used control
variables, (i.e., sigcon) are first identified. The latter are often
used to configure the system. As low signal values are often
anomalous in our context, minimum values seen in specific
time-windows (TW) are used to replace any missing values to
retain temporal relevance. Irregular signals (unevenly spaced)
are normalized and regularized.

Algorithm 1 Detection of Performance Degradation
Require: TW, sigperf=[P1, P2,. . . Pk], sigcon=[C1,. . . Cm], α, β
Ensure: Pclass . Label Performance Quality

1: procedure DETECT VARIABILITY(TW, sigperf, sigcon, α, β)
2: [sigperf’, sigcon’] ← Normalize (sigperf, sigcon)
3: sigP ←

∑Pk
P1

sigperf’, Representative signal for performance
4: [CPperf] ← detect ChangePoint (sigP

TW , size)
5: [CPcontrol] ← detect ChangePoint (sigcon’

TW , size)
6: if (CPcontrol > α), Ci ∈ sigcon then
7: Ignore Variability . Manual adjustments
8: else . Control variables do not change
9: if (CPperf = 0) then Pclass ← OK else

10: if (CPperf ≤ β) then Pclass ← Unsteady else
Pclass ← Degraded

11: return Pclass . Category

As all performance-indicative signals may not fluctuate to
the same extent but any can be indicative of degradation (e.g.,
Fig. 1), we combine the performance-indicative signals into a
single derived signal. We apply prior work [13] on breakout
detection to identify change points on the derived signal (i.e,
sigP ). Timestamps that maximize the difference between the
statistical characteristic of adjacent sub-patterns of a time-series
are estimated as breakouts or change points. The idea is to track
changes in both control variables and the performance signal.
In case of a major change in one or more control variables,
any noticeable performance degradation is less likely to be
anomalous. We measure change points in the control variables
during normal times devoid of performance degradation or
manual adjustments, to identify a threshold characteristic of
normal behaviour (i.e., α). This threshold is compared with the
number of change points observed while examining degraded
performance. When control variables are steady, based on the
distribution of the number of change points, we classify the
level of degradation. For minimal variability indicated by 0
change points, performance is labeled as OK. If the number
of change points is below a threshold (e.g., β =4) the time-
window is tagged as Unsteady, otherwise Degraded.

Fig. 8: Energy Fig. 9: Intensity Fig. 10: Combined
Figures 8 and 9 show energy and intensity signals, with 6 and

8 change points (i.e., CPs), respectively. Figure 10 shows that
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the combined signal has 4 change points, classifying this case as
Unsteady. The lower energy values, besides intensity drops
at ≈7000, and ≈9500 timesteps respectively, are inadequate to
count as change points in the combined signal. The number of
change points in the resulting signal need not coincide with the
min, max or average of the individual signals’ change points.
Sustained poor performance in the absence of variability (i.e.,
few or no CPs) due to subsystem or system failures may not be
identified as Degraded by Algo. 1, as our method is designed
towards capturing short-term variability.

The size parameter indicates the number of observations
used for detecting change points. We find that 20 is a suitable
size, such that minor signal deviations are captured while
redundant change points during normal signal drops are reduced.
Note that for more stable systems size would be selected to
be longer, for more dynamic systems it would be shorter.

Algorithm 2 Causal Analysis
Require: TW, sigperf=[P1,..Pk], sigcon=[C1,..Cm], sigL=[S1,..SN ]
Ensure: sigreduced=[S11, S26, S37. . . ] . Shortlisted Signals

1: procedure SEARCH SPACE REDUCTION(TW, sigperf, sigcon, sigL)
2: [sigL’] ← sigL \ ∀Si ∈ sigcon, TW . Adjusted signals
3: [sigL

corr] ← Bivariate Correlation (sigL’, sigperf)
4: [sigdenoise] ← Noise Filter (sigL

corr)
5: [sigEn] ← Signal Entropy (sigdenoise)
6: [sigShort] ← Dynamic Modeling (sigEn)

7: ScoreSi ← (W1∗CCSi )+(W2∗V arSi )+(W3∗E
Si
P

)+(W4∗CompSi )∑
Wj ,1≤j≤4

8: [sigShort] ← Rank Si based on Score
9: [sigreduced] ← sigShort ∼= System-Guided Ordering

10: return sigreduced . Localized Search Space
11: procedure BIVARIATE CORRELATION(sigL’, sigperf)
12: [CCP

Si , CCS
Si , CCK

Si ] ← Correlate(Si, sigperf), ∀Si ∈ sigL’

13: CCSi ← max [|CCSi
P |, |CCSi

S |, |CCSi
K |], ∀Si ∈ sigL’

14: sigL
corr ← sigL’ \ (CCSi ≤ γ), ∀Si ∈ sigL’ . Threshold γ

15: return sigL
corr

16: procedure NOISE FILTER(sigL
corr)

17: [VarSi . . . ] ← [TW
j], ∀Si ∈ sigL

corr , j ≤M . M Times
18: [sigdenoise] ← sigL

corr \ [VarSi ≥ θ], ∀ Si . Threshold θ
19: return sigdenoise . Noise Filter
20: procedure SIGNAL ENTROPY(sigdenoise)
21: [EP

Si . . . ] ← Compute EP ∀ Si ∈ sigdenoise

22: [sigEn] ← sigdenoise \ [EP
Si ≤ δ], ∀ Si . Threshold δ

23: return sigEn . Low pattern evolution
24: procedure DYNAMIC MODELING(sigEn)
25: [CompSi . . . ] ← Univariate Trends ∀ Si ∈ sigEn

26: [sigShort] ← sigEn \ [CompSi ≤ β], ∀ Si . Threshold β
27: return sigShort . Lower Trends

Causal Analysis: Algorithm 2 summarizes our approach
to filtering signals. The relationship between each signal and
system performance is examined using Spearman’s, Pearson’s,
and Kendall’s correlation coefficient (CC ∈ ±1) for a specific

time-window (TW). For a given system, a single performance
metric or a combined representative signal can be used for
computing correlation coefficients. Spearman’s correlation cap-
tures monotonic relationships better while Pearson’s is suitable
for linear associations. Kendall’s and Spearman’s correlation
strengths are often similar. The intuition is to first develop
a coarse-grained filter to exclude signals that do not deviate
in close temporal proximity to machine performance. The
maximum absolute value of CC among the three correlations
is used for each signal, to form a ranked list with decreasing
CC. Signals with weak correlations (i.e., CC ' 0, based on a
threshold, e.g., γ = 0.09) are removed. Figure 11 shows the
CCs of 5 signals, 2 related to rooms housing electrical devices,
and 1 each from a smoke detector, water-system, and magnet,
respectively, over a 4-hour time-window. Though Pearson’s
correlation is higher for the magnet signal (0.97), it may not
be causal. Water and Room signals have lower correlations
(≤0.86), yet, are helpful in detecting anomalies.

To identify signals with inherent high variability, their mean
and variance are compared across multiple time-frames. Signals
that frequently vary during operational times are either noisy or
relate to commonly affected non-causal subsystems. Figure 12
shows 4 signals, S1 to S4, where S4 has higher variance (0.06).
Signals with variance above a threshold (e.g., θ = 0.02) are
removed, as it is difficult to determine whether they are causal
or not in diagnosing subsystem defects.

We further assess signal behaviour using permutation entropy
(EP ) [11], which is more noise resistant in chaotic time-series.

EP = −
∑

p(πj)log2p(πj) (1)

A time-series is partitioned into multiple sub-vectors using
the embedding dimension and time-delay hyperparameters. An
ordinal pattern (πj) is one of the permutation patterns of these
sub-vectors. EP is Shannon’s entropy [11] over the probability
distribution of the ordinal patterns (p(πj)), for any time-window.
Signals with large entropy indicating higher complexity are
retained, and those below a threshold (i.e. δ) are dropped. The
aim is to measure the relative dynamical change of patterns
emerging in signals. Figure 13 shows the entropy values for
5 signals at 5 different time-spans. As seen, EP need not be
proportional to the window size. While causal signals (e.g.,
water) can score high, helpful signals (e.g., HVAC, a heating
unit) can score low if the sampling rate is low. Figure 14
shows that for time-frames T1 and T2, EP correctly scored
the non-causal signal (i.e., EnergyJitter) lower than the others.
Signals that may have been averaged with loss of resolution
often get filtered in this step.
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To detect finer time-varying changes in the signals, a dynamic
linear model is used. Dynamic models [27] are used for
statistical analysis of time-series by modeling the underlying
state space. Fig. 20 shows a signal with lower trend that may
be less causal compared to a signal exhibiting an interesting
pattern around the time of degraded performance, as seen
in Fig. 21. In Fig. 20, the filtered, predicted, and smoothed
components of a signal, respectively, have low variability. In
Fig. 21, a spike is evident around the 2200th time-step in
another signal. The trends over short time-bins are measured,
and signals with no or negligible trends are filtered. Signals
with better trends rank higher after this step.

Fig. 20: Linear Model Fig. 21: Univariate Trend
The remaining signals are ranked after assigning a score,

based on the weighted average of all the steps. Finally, the
ranked signals are ordered based on the machine layout, if
feasible. This step can rank a causal signal higher (e.g., based
on location) in certain cases. We give more weight to bivariate
correlation and entropy to filter non-causal signals. Our weights
are experimentally derived, and thresholds are estimated based
on the distribution of metrics. Suitable weights can be assigned
based on domain insights, or to reflect the causality of signals.

V. EVALUATION

Datasets: We evaluate 29 cases for a light source, logging
over 4000 to 8000 signals per year, as shown in Table I, related
to degraded performance and downtimes. The time-duration
of these cases range between 1 and 4 hours. We validate our
analysis with engineer logged reports (i.e., ground truth). We

TABLE I: System Details
System # Signals Cases Subsystem
LCLS [2] (LS1) 4184-8934 29 Water, Magnet, RF, Electrical
NSLSII [3] (LS2) 70 8 Water
APS [1] (LS3) 1331 3 Magnet Power Supply

also study 8 and 3 cases from two other machines with 70
and 1331 signals, respectively, to assess the generality of the
proposed methods. The anomalous events relate to problems
in water systems, magnets, RF cavities, and electrical devices.
The three systems are similar, but not identical in terms of the
overall architecture and parameter space.

Degradation Detection: System performance is studied with
the performance-indicative signals (i.e., intensity and energy)

using Algo. 1. Figure 15 shows that for a specific 4-hour time-
frame, certain signals with enhanced data resolution reflect
variations better (e.g., Intensity2, Energy2) with more change
points (CP). As the size parameter of change point detection
method is increased from 10 to 200, the number of CPs do not
change significantly for certain signals (e.g., rate) indicating
lack of major variability. Signals not showing finer variations
may be deficient of the necessary frequency and regularity of
data needed for analysis. Figures 16 and 17 show the variance
and CPs for 18 samples from different years, with the same
threshold (i.e., β=5). Fig. 17 shows that the CPs of two samples
exceeding the threshold are considered degraded, while the
CPs in Fig. 15 remain below the threshold. The magnitude of
variance may not be a reliable indicator of degradation, since
for the same number of CPs (e.g., 2), the variance can be
different (e.g., 0.002 vs. 0.89). Though variance can be slightly
higher during degraded performance relative to normal times,
it does not adequately estimate the level of degradation.

For LS1, time-windows of 4-hour, and 5-min are studied
(we had insufficient data to conduct the same studies for
LS2 and LS3). A few hours help capture degradation, while
short time-scales help flag fine-grained changes and estimate
detection errors. Figure 18 shows that 29.3% to 50% of times
are OK, 42.6% to 53.4% are Unsteady, while below 17.2%
are classified as Degraded performance. ≈86.2% and 92.6%
of the times are found to be correctly classified by our detector
(i.e., <15% errors), as seen in Fig. 19. Cases where the
statistical nature of normal and anomalous times are similar
(leading to errors), are often observed in CPSs [10].

Fig. 22: CDF
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Causal Analysis: Figure 22 shows the cumulative distri-
bution function (CDF) of the three correlation coefficients
calculated to check each signal’s association with LS1 per-
formance. The fraction of signals with strong (positive or
negative) correlation (i.e., close to ±1) is not high (≤15%)
(Fig. 22). However, several signals have moderate to weak
correlations (≈ 60%→ ±0.5) that need to be further examined
for causal analysis. For LS1, cases of downtime (19) and
degraded performance (10) are identified. Figure 23 shows that
52% to 59% of the shortlisted signals are causal, while 63% to
78% are related. Related signals include causal signals as well
as those signals affected by the anomalous condition. While it



is practically difficult to validate every shortlisted signal, based
on the identified primary subsystem problem, the non-causal
signals are excluded. As an example, for a water system (W1)
problem, signals related to W1 are causal, and affected signals
from the same or near by area as W1 are related. For LS1, the
final list of signals comprising correlated signals using Algo. 2
is below 50, which is ≤1.2% of the considered signals.

Figure 24 shows that 68.7% to 73.2% of the signals
in LS2 and LS3 are related to faulty conditions. As only
signals pertaining to a few subsystems are accessible, not all
steps of Algo. 2 are applicable. The performance-indicative
signals for LS2 were unavailable. For LS3, we had inadequate
data pertaining to normal times, to derive the noise filtering
threshold. Despite these limitations, some of the related causal
signals are correctly identified using our approach.

TABLE II: Related Signals
WaterDegraded RFDowntime

R Signal S R Signal S
2 Wat1-Loc1 68 1 RF-Loc3 64
4 Wat2-Loc1 62 2 RF-Loc2 59
9 Room-Loc2 37 3 Wat1-Loc4 48
11 RF-Loc1 35 5 Wat2-Loc4 43

TABLE III: Rank Improvement
Signal Rank

CC +NF +EP All
Wat1-Loc1 50 27 18 2
Room-Loc2 48 39 21 9
RF-Loc2 38 24 16 2
Wat1-Loc4 149 71 26 3

Table. II shows examples of degraded performance due
to a faulty water system, and downtime caused by an RF
trip, through a few selected signals with their ranks (R) and
correlation scores (S). Based on the fraction of subsystem
signals evident for a specific location (e.g., 2 water signals from
location 4 for RF-caused downtime), engineers can hypothesize
potential defects. It helps to limit the physical areas for problem
diagnosis, so that even in the presence of non-causal signals, not
many areas (usually distant from one another) need inspection.
The divergence in correlation scores of signals, if any, can
also help prioritize certain signals over others for diagnosis.
Table. III shows how the ranks improve after subsequent steps
(CC: Correlation Coefficient, NF: Noise Filter, EP: Entropy) of
causal analysis for a few signals. For certain cases, the related
signals are well correlated to performance leading to higher
ranks at the outset (e.g., RF-Loc2 ranks 38 for CC), while
for those that are weakly-correlated, the ranks improve with
successive filtering (e.g., rank 149 to 3 of Wat1-Loc4). Further
enhancement using domain insights is subject to future work.

Our design strives to achieve a balance between coarse
correlation and finer temporal changes. Our modular approach
of filtering can be suitably re-ordered to eliminate non-causal
signals and is generally applicable for systems with time-
series data spanning both anomalous and normal times. The
localization efficacy depends on a system’s dynamic nature,
besides the sampling rate, regularity, and noise-level of signals.
Higher temporal density in time-series generally helps. For
cases with bi- or unidirectional cause and effect relationships,
small-scale changes (e.g., O(mins)), and discrete-valued signals,
pinpointing problem sources with confidence needs more study.

VI. CONCLUSION

We describe methods to detect performance degradation with
search space localization for causal analysis. Our approach

achieves over 90% success in detecting degradation and ranks
relevant signals among the top 1.2% of the considered signals.
Our experimental insights about signal variations has the
potential to improve the reliability of diverse complex systems.
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